Individual size variation reduces spatial variation in abundance of tree community assemblage, not of tree populations
نویسندگان
چکیده
Research on individual trait variation has gained much attention because of its implication for ecosystem functions and community ecology. The effect of individual variation on population and community abundance (number of individuals) variation remains scarcely tested. Using two established ecological scaling laws (Taylor's law and abundance-size relationship), we derived a new scaling relationship between the individual size variation and spatial variation of abundance. Tested against multi-plot tree data from Diaoluo Mountain tropical forest in Hainan, China, the new scaling relationship showed that individual size variation reduced the spatial variation of community assemblage abundance, but not of taxon-specific population abundance. The different responses of community and population to individual variation were reflected by the validity of the abundance-size relationship. We tested and confirmed this scaling framework using two measures of individual tree size: aboveground biomass and diameter at breast height. Using delta method and height-diameter allometry, we derived the analytic relation of scaling exponents estimated under different individual size measures. In addition, we used multiple regression models to analyze the effect of taxon richness on the relationship between individual size variation and spatial variation of population or community abundance, for taxon-specific and taxon-mixed data, respectively. This work offers empirical evidence and a scaling framework for the negative effect of individual trait variation on spatial variation of plant community. It has implications for forest ecosystem and management where the role of individual variation in regulating population or community spatial variation is important but understudied.
منابع مشابه
Sequence Variations of Mitochondrial DNA Displacement-Loop in Iranian Indigenous Sheep Breeds
Mitochondrial DNA (mtDNA) has been used extensively to study population genetics because it has the unique features of maternal inheritance, a relatively fast rate of evolution and lack of recombination. A total of 82 unrelated sheep from 10 Iranian indigenous sheep breeds were investigated to determinate the maternal genetic diversity using a sequence of a 685 bp segment of the displacement lo...
متن کاملSpatial distribution and assemblage structure of foraminifera in Nayband Bay and Haleh Estuary, North-West of the Persian Gulf
The spatial distribution of benthic foraminiferal assemblage of Nayband Bay and Haleh Estuary in the North-West of the Persian Gulf, was explored during 2011-2012 . The relationship between spatial pattern of foraminifera assemblages and the ambient factors (i.e. water temperature, salinity, pH, dissolved oxygen, sediment grain size distribution, sediment organic content, and CaCO3 concentrati...
متن کاملSpatial distribution and assemblage structure of foraminifera in Nayband Bay and Haleh Estuary, North-West of the Persian Gulf
The spatial distribution of benthic foraminiferal assemblage of Nayband Bay and Haleh Estuary in the North-West of the Persian Gulf, was explored during 2011-2012 . The relationship between spatial pattern of foraminifera assemblages and the ambient factors (i.e. water temperature, salinity, pH, dissolved oxygen, sediment grain size distribution, sediment organic content, and CaCO3 concentrati...
متن کاملSeeing the trees for the leaves / oaks as mosaics for a host-specific moth
From the perspective of a specialist herbivore, how homogenous are individual tree crowns as patches of habitat? We partitioned variation in physical and chemical host leaf traits and in the abundance and performance of a specialist oak leaf miner, Tischeria ekebladella , into variation at different hierarchical levels. For the phenolic contents of the leaves, we examined variation among oak st...
متن کاملTree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species
BACKGROUND The diversity and composition of the microbial community of tree leaves (the phyllosphere) varies among trees and host species and along spatial, temporal, and environmental gradients. Phyllosphere community variation within the canopy of an individual tree exists but the importance of this variation relative to among-tree and among-species variation is poorly understood. Sampling te...
متن کامل